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Abstract. We use a group theoretical technique to project out the partition function for a system of quarks,
antiquarks and gluons onto a particular representation of the internal symmetry group SU(3): the colour
singlet, colour octet and colour 27-plet, at finite temperature. We do this to calculate the thermodynamic
quantities for those representations. We also calculate the change in free energy of the plasma droplet
formed from the hot hadronic gas. We find that the size of the droplet in the colour-octet representation
is smaller than that in the colour-singlet representations at different temperatures in the vicinity of the
critical temperatures of the phase transitions.

1 Introduction

Colour confinement is an experimentally well established
property of QCD at temperature T = 0. Though it has not
been conclusively demonstrated in QCD, it is universally
believed to be true. Several model calculations indicate
that indeed the 3q and qq̄ colour-singlet states are bound
more than for example the colour-octet, -decuplet rep-
resentations, etc. [1]. However, one cannot simply throw
away the higher-colour representations like the octet as
they manifest themselves in specific situations like in mul-
tiquark systems [2] etc. Recently the colour-octet con-
tribution has also been shown to be significant during
quarkonium production in hadronic collisions [3]. In this
paper we study the role of higher representations like the
octet, the 27-plet etc. for bulk QGP at finite temperature.
Here we shall demonstrate their significance and the new
insights that they yield.

It is believed that in QCD the “transition from
hadronic matter to quark–gluon matter is a transition
from local colour confinement (on the scale of 1 fm) to
global colour confinement” [4]. With the mathematical de-
velopment of the consistent inclusion of internal symme-
tries in a statistical thermodynamical description of quan-
tum gases [5], the idea was applied to the colour SU(3)
group [6,7]. The group theoretical projection technique
was used to project out colour-singlet representation for a
bulk system consisting of a quark–gluon plasma (QGP) at
finite temperature. For SU(3), due to the colour conserva-
tion the whole QGP fireball needs to be a colour singlet.
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The colour-projection technique allowed one to do this in
a neat way.

The requirement of the imposition of being a colour
singlet for these systems has been found to be of great
significance and much work has been done using this tech-
nique of colour projection [8–13]. Several interesting re-
sults were obtained; one of them was that if one were
to compare a colour-unprojected bulk QGP system with
a colour-singlet projected QGP system, then important
finite-size corrections are introduced [6,7]. These finite-
size corrections arising from the imposition of being a
colour singlet disappear as the size and/or temperature
of the system increases. This was taken to mean that for
large-sized QGP systems, which may have been relevant
in the early universe, for QCD phase transition scenarios
one may automatically assume globally it to be a colour
singlet [4] of the system without any significant modifi-
cations. This allowed for the possible existence of large-
size stable quark stars (which were trivially assumed to
be colour singlet [14]) in the early universe QCD phase
transition [15–18]. These scenarios continue to dominate
the hadronisation ideas in the big bang models [19]. These
ideas have also been quite significant in the heavy ion col-
lision scenarios as well.

To understand the role of the colour degree of free-
dom we use the colour-projection technique [5–13]. In this
technique one constructs a generating partition function
from which the restricted partition function for any given
irreducible representation can be obtained. We give the
necessary mathematical details for the colour-projection
technique in Sect. 2; the results will be discussed in Sects. 3
and 4, respectively.
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2 Colour-projection technique

The orthogonality relation for the associated characters
χ(p,q) of the (p, q) multiplet of the group SU(3) with the
measure function ζ(φ, ψ) is

∫
SU(3)

dφdψζ (φ, ψ)χ?
(p,q) (φ, ψ)χ(p′,q′) (φ, ψ)

= δpp′δqq′ , (1)

where the measure function [7] is given by

ζ(φ, ψ) =
[
sin

1
2

(
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2

)
sin

φ

2
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1
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ψ − φ
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)]2

. (2)

Let us now introduce the generating function ZG by

ZG(T, V, φ, ψ) =
∑
p,q

Z(p,q)(T, V )
d(p, q)

χ(p,q)(φ, ψ), (3)

with
Z(p,q)(T, V ) = tr(p,q)

[
exp

(
−βĤ0

)]
, (4)

where Z(p,q) is the canonical partition function. The many-
particle states which belong to a given multiplet (p, q)
are used in the statistical trace with the free hamiltonian
Ĥ0, d(p, q) is its dimensionality and β is the inverse of
the temperature T . The projected partition function Z(p,q)
can be obtained by using the orthogonality relation for the
characters. Hence the projected partition function for any
representation (p, q) is

Z(p,q)(T, V ) = d(p, q)
∫

SU(3)
dφdψζ (φ, ψ)χ?

(p,q)(φ, ψ)

× ZG (T, V, φ, ψ) . (5)

The characters of the different representations are as fol-
lows:

χ(1,0) = exp (2iψ/3) + 2 exp (−iψ/3) cos(φ/2), (6)
χ(0,1) = χ?

(1,0), (7)

χ(1,1) = 2 + 2 [cosφ+ cos (φ/2 + ψ)
+ cos (−φ/2 + ψ)] , (8)

χ(2,2) = 2 + 2 [cosφ+ cos(3φ/2) cos(φ/2)]
+ 2 (1 + 2 cosφ) [cos (φ/2 + ψ) (9)
+ cos (−φ/2 + ψ) + cos 2ψ + (1/2) cosφ] .

The expressions of the generating function used in (5) is

ZG(T, V, φ, ψ) = tr
[
exp(−βĤ0 + iφÎz + iψŶ )

]
, (10)

where Îz and Ŷ are the diagonal generators of the maximal
abelian subgroup of SU(3). Our plasma consists of light
spin 1/2 (anti) quarks in the (anti-) triplet representation
(0, 1) and (1, 0), respectively, and massless spin one glu-
ons in the octet representation (1, 1). Note that the non-
interacting hamiltonian Ĥ0 is diagonal in the occupation-
number representation. In the same representation one can

write the charge operators Îz and Ŷ as linear combinations
of the particle-number operators. Hence ZG can be easily
calculated in the occupation-number representation. With
an imaginary “chemical potential” this is just like a grand
canonical partition function for free fermions and bosons.
One obtains

ZG
quark =

∏
q=l,m,n

∏
k

[1 + exp (−βεk − iαq)]

× [1 + exp (−βεk + iαq)] , (11)

ZG
glue =

∏
g=µ,ν,ρ,σ

∏
k

[1 − exp (−βεk + iαg)]
−1

× [1 − exp (−βεk − iαg)]
−1
. (12)

Here the single-particle energies are given as εk. For the
(1, 0), (0, 1) and (1, 1) multiplets, the eigenvalues of Îz and
Ŷ give the expressions for the different angles:

αl = (1/2)φ+ (1/3)ψ, αm = (−1/2)φ+ (1/3)ψ,
αn = (−2/3)ψ, (13)

αµ = αl −αm, αν = αm −αn, αρ = αl −αn, ασ = 0.
(14)

We neglect the masses of the light quarks. At large volume
the spectrum of a single particle becomes quasi-continuous
and Σ . . . → V/(2π)3

∫
d3k . . . Then one gets

ZG(T, V, φ, ψ) = ZG
quark(T, V, φ, ψ)ZG

glue(T, V, φ, ψ),(15)

which enables us to obtain the partition function for any
representation, i.e. Z(p,q). One may thus obtain any ther-
modynamical quantity of interest for a particular repre-
sentation. For example, the energy

E(p,q) = T 2 ∂

∂T
lnZ(p,q), (16)

and the free energy

F(p,q) = −T lnZ(p,q). (17)

3 Results

On the basis of SU(3) one expects that due to colour
conservation the whole QGP fireball should be a colour
singlet. Hence work was done by several groups to impose
the condition of being a colour singlet on the system [7,?].
Note that in these calculations perturbative interactions
had been neglected. But this may not be a bad approxima-
tion especially at high temperatures. The most dramatic
consequence of the colour interaction is to cause global
colour confinement of the quarks and gluons and this is
automatically taken care of by restricting the partition
function to colour singlets [4]. This perhaps may amount
to the handling of a major chunk of the non-perturbative
aspect of the QCD interaction. It was found that

E(0,0) = E0 + Ecorr, (18)
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where E0 was the unprojected energy (i.e. with no colour
restriction whatsoever) given by

E0 = 3aqV T
4, (19)

with aq = (37π2/90) and Ecorr was the correction intro-
duced due to the imposition of being a colour singlet. Elze
et al. [7,8] have found that Ecorr was significant only for
a finite size, i.e. when TV 1/3 was small (< 2), and van-
ished when TV 1/3 became large (> 2). This would mean
that the colour-singlet restriction only affects for a size
of say ∼ 1.0 fm for T = 160 MeV, while for a large size
and higher temperatures one need not perform an explicit
colour-projection calculation because the consequent cor-
rections are negligible therein. But below we shall show
that this is not the whole story.

Here we project out different representations like the
colour octet (1, 1), the 27-plet (2, 2) etc. on the QGP. The
idea is that for the ground state one knows that the singlet
state is bound and the higher representations are expelled
to higher energies [1]. Also for the ground states the role
of the higher representations has quite well been studied
[2,3]. The point to be emphasised is that the role of the
global demand of being a colour singlet at high tempera-
tures is only an assumption and has never been explicitly
demonstrated even in a model calculation. Here we would
like to study the basis of this assumption and also the role,
if any, of higher representations like the octet, the 27-plet,
etc. Let us look at the octet, 27-plet etc. projection. For
simplicity we take the µ = 0 case with two flavours. We
plot in Fig. 1

Deff
(p,q) = E(p,q)/E0 = 1 + Ecorr

(p,q)/E0. (20)

Also shown is Deff
(0,0) as obtained earlier by other groups

[7].
Next we calculate the free energy of the plasma droplet

formed in the nucleation process from the hot hadronic
gas. Here the fields in the plasma obey the bag boundary
conditions, staying inside the plasma droplet [20]. Within
the bag model, the change in free energy which is respon-
sible for the nucleation process can be written as

∆F = −T lnZ(p,q) +BV + PhV + 4πR2σ, (21)

where V is the volume of the plasma droplet with radius
R formed in the hot hadronic gas. B is the bag pressure
and σ is the surface free energy of the quark–gluon/hadron
interface.

If the hadronic gas consists of massless pions only, then
the pressure of the hadronic gas Ph is given by [21]

Ph = ahT
4, (22)

where ah = π2/30.
By calculating the partition function (Z(p,q)) numer-

ically for different colour representations (p, q) from (5),
we can calculate the change in free energy (∆F ) of the
plasma droplet from (21). We plot this change in free en-
ergy as a function of the radius (R) of the plasma droplet
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Fig. 1. Deff (see text) for the colour singlet, octet and 27-plet
(with two flavours) representation as a function of TV 1/3/~c

in Fig. 3. We see that for a bag pressure B1/4 = 200 MeV
and σ = 50 MeV/fm2 [21], the radius (R) of the plasma
droplet for which ∆F has a peak is 1.55 fm for a colour
singlet, whereas it is 1.53 fm for the colour-octet represen-
tation at a temperature T = 160 MeV. At T = 170 MeV,
the radius (R) is 1.20 fm for the colour singlet, whereas
it is 1.15 fm for the colour-octet representation. Similarly
for other temperatures as well we find that the radius of
the colour-octet system is always smaller than the colour-
singlet system.

4 Discussion

It is interesting to note from Fig. 1 that for large values
of TV 1/3 all representations, singlet, octet, 27-plet, etc.,
approach each other with the unprojected energy. There
is nothing which favours the colour-singlet representation
over the colour-octet at high temperatures. Note that this
result could directly be seen from the expression for Z(p,q),
see (4), which for the continuum approximation for a suf-
ficiently large volume and temperature becomes indepen-
dent of the representation. Hence the energies for each
colour representation approach each other for large TV 1/3.
As the negligence of the small perturbative QCD interac-
tions is justified at high enough temperatures, this result
seems to be quite model independent.

Note that the quarks and gluons are non-interacting
in our model. While this is justified at high temperatures,
the neglect of interactions may not be justified at low tem-
peratures. However, as one of the most dramatic effects of
the colour interaction is ensuring the imposition that it
is a colour singlet on the bulk system, it is already taken
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Fig. 2. Deff for the colour singlet and octet representations as
a function of TV 1/3/~c for different numbers of flavours: 0, 2
and 3

care of in our model [4]. So perhaps a significant portion
of the non-perturbative effect may already be there in our
model calculations.

From Fig. 1 note that for small TV 1/3 values the octet
and the 27-plet energies shoot up. Though gauge interac-
tions are believed to be essential to show confinement in
QCD, what we note here is that our projection technique
at even low temperatures is able to discriminate between
the singlet and the octet states etc. Figure 2 gives a µ = 0
result for zero flavour, two flavour and three flavour for
the (0, 0), (1, 1) representations. This shows a similar be-
haviour of the energy states with colour-singlet and -octet
representations for different flavoured systems. The fact
that the colour-singlet representation gets favoured over
the octet representation etc. at low temperature group
theoretically indicates that for composite systems SU(3)
is a good symmetry.

We find that when the baryon free quark–gluon plasma
droplets are formed in the nucleation process from the
hot hadronic gas, the size of the droplet is smaller for the
colour-octet representations of SU(3) compared to the size
of the colour-singlet droplet. This is observed to be true
for different temperatures in the vicinity of the quark–
hadron phase transition temperature. So being smaller in
size, these colour-octet droplets could dress themselves to
produce the global colour-singlet QGP droplets at high
temperatures.
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Simaõ, Z. Phys. C 23, 243 (1984)

10. B.S. Skagerstam, Z. Phys. C 24, 97 (1984)
11. G. Auberson, L. Epele, G. Mahoux, F.R.A. Simaõ, J.
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